intrinsicFRP - An R Package for Factor Model Asset Pricing
Functions for evaluating and testing asset pricing models,
including estimation and testing of factor risk premia,
selection of "strong" risk factors (factors having nonzero
population correlation with test asset returns),
heteroskedasticity and autocorrelation robust covariance matrix
estimation and testing for model misspecification and
identification. The functions for estimating and testing factor
risk premia implement the Fama-MachBeth (1973)
<doi:10.1086/260061> two-pass approach, the
misspecification-robust approaches of Kan-Robotti-Shanken
(2013) <doi:10.1111/jofi.12035>, and the approaches based on
tradable factor risk premia of Quaini-Trojani-Yuan (2023)
<doi:10.2139/ssrn.4574683>. The functions for selecting the
"strong" risk factors are based on the Oracle estimator of
Quaini-Trojani-Yuan (2023) <doi:10.2139/ssrn.4574683> and the
factor screening procedure of Gospodinov-Kan-Robotti (2014)
<doi:10.2139/ssrn.2579821>. The functions for evaluating model
misspecification implement the HJ model misspecification
distance of Kan-Robotti (2008)
<doi:10.1016/j.jempfin.2008.03.003>, which is a modification of
the prominent Hansen-Jagannathan (1997)
<doi:10.1111/j.1540-6261.1997.tb04813.x> distance. The
functions for testing model identification specialize the
Kleibergen-Paap (2006) <doi:10.1016/j.jeconom.2005.02.011> and
the Chen-Fang (2019) <doi:10.1111/j.1540-6261.1997.tb04813.x>
rank test to the regression coefficient matrix of test asset
returns on risk factors. Finally, the function for
heteroskedasticity and autocorrelation robust covariance
estimation implements the Newey-West (1994)
<doi:10.2307/2297912> covariance estimator.